TOP榜写作榜手机小说

最近更新新书入库全部小说

妙笔生花阁 >> 虐心耽美 >> 网游之平凡之路2 >> 第187章 附身

投射在叶翔面前的问题非常简单,只有简单的几个字和数字组成,而这个问题便是:

证明1+

这个问题估计很多人看了都会觉得这是一个再简单不过的问题了,这样简单的问题就连一年级的小学生都知道,可这个简单的等式要有如果去证明呢?这确实一个难题。

而在地球时代一个中国人却证明了这个看似简单的问题,而这个中国人便是数学家陈景润。

而这里的1+其实也并不是一个简单的问题而已,而是一个证明哥德巴赫猜想的证明命题,所表示的是每一个偶数都是一个素数及两个素数乘积之和,+3*5,其公式可以表达为:

1+p2xp3

其中n为偶数;p1,p2,p3都为素数。

1+p2

n:偶数(xn,n是自然数)

p1,p2:素数

xn’1+1,x、n’2+1.(n’是能满足素数表达式的自然数;当然,也满足奇数的表达式)

证明:

1+p2xp3可以推出:

-p2xp3:素数等于偶数减去两个素数的积之差。

同时:ngt;p1并且ngt;p2xp3。

1.两个素数之和是偶数:p1+

(1)假设n’是能满足素数表达式的自然数(当然,也满足奇数的表达式),xn’+1。例如:xn’1+1,xn’2+1.

p1+2xn’1+1)+(2xn’2+1)

=2xn’1+2xn’2+2

=2x(n’1+n’2+1)

显然表达式2x(n’1+n’2+1)是一个偶数。令这个偶数为n,则

2x(n’1+n’2+1)=n,因此

p1+成立,即:两个素数之和是偶数。

(2)或者证明如下:

1+p2xp3,可以推出:ngt;p21xp31;并且:p31)gt;0,n2-p22xp32gt;0。推出:p1+p2gt;2xp32代入下式:

注:

,是素数,xn’21+n’31+1,xn’22+1,xn’32+1,其中n’21,n’31,n’22,n’32是能满足素数表达式的自然数(当然,也满足奇数的表达式)。

2.n1,n2是偶数。(,n2是自然数)

p1+n1-p21xp31)+(n2-p22xp32)

={’21+1)x(2xn’31+1)]}+{n’22+1)x(2xn’32+1)]}

=2xn’31-2xn’21-2xn’31-4xn’22xn’32-2xn’22-2xn’32-2

=2x(n1+n2-2xn’21x’31-2xn’22xn’32-n’22-n’32-1)

因为:原式左右两边均已经证明大于零,所以表达式

n1+n2-2x’xn’22xn’32-n’22-n’32-1gt;0

并且,又因为该表达式至少是一个自然数。因此,令该自然数为n,则

’31-2xn’22xn’32-n’22-n’32-,

2xn是一个偶数。

令偶数为n,,因此,

数n,即:

p1+成立。即:两个素数之和是偶数。

2.偶数n是两个素数之和:1+p2

请注意:1+p2成立,-p1即偶数与素数之差为素数成立。

1+p2*p3可以推出:

-p2xp3:素数等于偶数减去两个素数的乘积之差。

现在,’-p’2xp’3

注:

n’是偶数;(n’=2xn’;n’是自然数)

p’2,p’3是素数。令p’xn’2+1,p’3=2xn’3+1。n’2,n’3是能满足素数表达式的自然数(当然,也满足奇数的表达式)。

,p2,p3均小于n。

’-p’2xp’3得:n’0.

即:ngt;n’gt;p’2xp’3gt;0,n-p1gt;0,

-p1

而n-p1=n-(n’-p’2xp’3)

=(n-n’)+p’2xp’3

=(n-n’)-(-p’2xp’3)

=[(n-n’)+2xp’2xp’3]-p’2xp’3

显然可证:

式中(n-n’)+2xp’2xp’3gt;0,并且

(n-n’)+2xp’2xp’x(n-n’)+2xp’2xp’3是偶数;

令偶数为n3,则

(n-n’)+2xp’2xp’3=n3,则

3-p’2xp’3

所以,符合“1+p2xp3可以推出:-p2xp3:素数等于偶数减去两个素数的和之差。”

即:原式右边n3-p’2xp’3为素数。因此,p2=n-p1为素数。

因此,证明“-p1即:偶数与素数之差为素数成立”。

-p1可以推出:1+p2

因此,证明“偶数n是两个素数之和:1+p2”成立。

-------------------------

如此复杂的证明过程叶翔自然不可能知道,所以叶翔只能用沉默回应。

大约过了十分钟左右,诡异小童对叶翔说道:“弄现在的作案时间还剩一分钟,如果一分钟只能你再不给出答案,这么就等于你主动弃权,并视作回答错误。”

而叶翔却对诡异小童说道:“不用等一分钟了,我现在就可以告诉你这个问题我回答不了。”

诡异小童冷笑道:“既然你回答不了,那就只能对不起啦!”说着诡异小童的食指指向叶翔,一道灰色的射线从诡异小童的指尖射出,直接命中叶翔额头的眉心位置。

本来叶翔在被灰色射中后就将立即死亡的,但不知为何被灰色射线射中后的叶翔竟然完全没有反应,这下轮到诡异小童感到吃惊了。

诡异小童望着叶翔,很是震惊的说道:“这……这怎么可能,你应该魂飞魄散才对的呀!”

而叶翔再次露出之前的那个自信微笑,回应道:“我之前不是说过吗?我的命只有我自己能够作主,其他人谁说了也不算。”说着叶翔一个瞬步跨到诡异小童的身前一把扼住了诡异小童的脖颈,将其生生拎了起来。

被扼住喉咙拎起的诡异小童望着叶翔有些泛蓝的眼睛,突然想到了什么,


状态提示:第187章 附身
第1页完,继续看下一页

网游之平凡之路2最新章节 - 网游之平凡之路2全文阅读 - 网游之平凡之路2txt下载 - 肥羊的全部小说 - 网游之平凡之路2 妙笔生花阁

猜你喜欢: 蓝天航空公司的空姐王静网游三国之铁血征程见凤使舵炉鼎生子日常星穹之上【倚天同人】敏若赛尔号之夜月之痛,雪之冰凉大神无礼,小兔快跑最强爆炸升级帝国婚姻gl神通主宰格莱美之光[综]死神来了绿妻路遮天我是狠人师尊龙神帝尊无限之道法自然空间大玩家异界大领主危险性游戏续终极学生在都市情燃今生(1-463)山中小屋全能学习机虫族之你肯定喜欢我龙渊法武封圣重生之大梦七年都市之修仙狂少腹黑萌妻:校草老公好难缠
完本推荐: 【风骚妈妈的桃花】[abo]Omega美人追求指南【超能陆战队】棉花糖之旅[刀剑/综/审All]接手暗黑本丸的正确方法每天都奔波在救男友一线[快穿][穿书]如何喂养一只主角无涯山上的花开花落之秦天有甄君登天路守爱一生魂穿百年之末世(清穿同人)大清第一纨绔(韩娱同人)Lion and Rabbit蛇祭+薤露咖啡情缘/悄夺天工/悄冥佳人复仇者联盟里的剑仙[综]一觉醒来总能发现英灵们在怼天怼地怼世界桓容(瓶邪同人)轮渡我征服了公公暗黑破坏神之毁灭-被遗忘之子重生之扫墓末世重生之绝对毒宠/末世重生之绝对独宠丛林之王权倾天下[重生]悖德之翼(H)
最近更新: 奏是这么苏[娱乐圈]谋情/焱·鸾夏日的思念[快穿]宿主总是被打脸爱上死对头+番外醴人醉夫夫善哉木子和言梦入芙蓉浦经理,请“操”盘单恋待花开恰如其分切肤之爱老子不想当护士三喜淘宝大唐王者荣耀之特殊玩家[综]这剧情绝逼不对重生之刻骨快穿之主神归来[快穿]拨乱反正系统成魔重生之过往重生星际男神犯罪心理直播之荒野挑战帝国大了,什么逗比都有傻妻三千浮屠杀戮秀

网游之平凡之路2最新章节手机版 - 网游之平凡之路2全文阅读手机版 - 网游之平凡之路2txt下载手机版 - 肥羊的全部小说 - 网游之平凡之路2 妙笔生花阁移动版 - 妙笔生花阁手机站